Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Shea-Lin Ng, ${ }^{\text {a }}$ Venkataraya Shettigar, ${ }^{\text {b }}$ Ibrahim Abdul Razak, ${ }^{\text {a }}$ Hoong-Kun Fun, ${ }^{\text {a }}{ }^{\text {P. S. }}$ Patil $^{\text {b }}$ and S. M. Dharmaprakash ${ }^{\text {b }}$

${ }^{\text {a } X \text {-ray Crystallography Unit, School of Physics, }}$ Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {b }}$ Department of Studies in Physics, Mangalore University,
Mangalagangotri, Mangalore 574199, India.
Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.048$
$w R$ factor $=0.126$
Data-to-parameter ratio $=22.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1-(4-Bromophenyl)-3-(3,4-dimethoxy-phenyl)prop-2-en-1-one

Each of the two unique molecules of the title compound, $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrO}_{3}$ is essentially planar. The crystal structure is stabilized by intramolecular and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. These interactions link the symmetry-related molecules into infinite chains along the c axis. These chains are then stacked parallel to the b axis.

Comment

Chalcone is an important chemical compound and is studied extensively because of its significant applications in various fields. In biology and biochemistry, chalcone is claimed as one of the compounds that plays a vital role in anti-inflammatory, antimalarial, antifertility and antitumor activities (De Vincenzo et al., 1995; Kumar et al., 2003). Furthermore, chalcone derivatives have attracted much interest as they exhibit extremely high and fast nonlinearity (Fichou et al., 1988; Patil, Teh et al., 2006; Uchida et al., 1998; Zhang et al., 1990). Crystals of the title compound, (I), do not exhibit second-order nonlinear optical properties as they crystallize in a centrosymmetric space group. In view of the interest in the behavior of chalcone and its derivatives, a systematic study of their synthesis and single-crystal structure determinations has been carried out (Ng, Patil et al., 2006; Ng, Shettigar et al., 2006; Patil, Ng et al., 2006; Patil, Teh et al., 2006; Radha Krishna et al., 2005; Sathiya Moorthi, Chinnakali, Nanjundan, Santhi \& Fun, 2005; Sathiya Moorthi, Chinnakali, Nanjundan, Radhika et al., 2005; Sathiya Moorthi, Chinnakali, Nanjundan, Selvam et al., 2005; Sathiya Moorthi, Chinnakali, Nanjundan, Unnithan et al., 2005; Teh et al., 2006; Uchida et al., 1995). We report here the synthesis and crystal stucture of (I) (Fig. 1).

(I)

The asymmetric unit of (I) contains two molecules, A and B. The bond lengths and angles in both molecules are similar, show normal values (Allen et al., 1987) and are comparable to the corresponding values in related structures (Jeyabharathi et al., 2002; Ng, Patil et al., 2006; Ng, Shettigar et al., 2006; Patil, Ng et al., 2006; Patil, Teh et al., 2006; Ravishankar et al., 2005; Sathiya Moorthi, Chinnakali, Nanjundan, Santhi \& Fun, 2005; Sathiya Moorthi, Chinnakali, Nanjundan, Radhika et al., 2005;

Figure 1
The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atom numbering. The dashed lines indicate intramolecular hydrogen bonds.

Figure 2
The crystal packing of (I), viewed down the b axis. Hydrogen bonds are shown as dashed lines.

Sathiya Moorthi, Chinnakali, Nanjundan, Selvam et al., 2005; Sathiya Moorthi, Chinnakali, Nanjundan, Unnithan et al., 2005; Teh et al., 2006). Each chalcone molecule is essentially planar with dihedral angles between the two benzene rings of $9.30(15)^{\circ}$ in molecule A and $4.85(16)^{\circ}$ in molecule B. In both molecules, the methoxy groups are coplanar with the attached ring. The torsion angles $\mathrm{C} 16-\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 12$ and $\mathrm{C} 17-\mathrm{O} 3-$ $\mathrm{C} 14-\mathrm{C} 15$ are $-3.9(5)^{\circ}, 2.0(5)^{\circ}$ in A and $-4.1(5)^{\circ},-0.1(5)^{\circ}$ in B, respectively.

In the crystal structure, all O atoms are involved in intramolecular and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1). The molecules are linked by intermolecular $\mathrm{C} 12-$ H12 \cdots O1 interactions into cyclic centrosymmetric $R_{2}^{2}(16)$ dimers (Bernstein et al., 1995). These dimers are interlinked by $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 3$ intermolecular interactions forming infinite chains along the c axis. These chains are then stacked parallel
to the b axis and molecules within the stacks are interlinked by intermolecular $\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O} 2$ interactions.

Experimental

Compound (I) was obtained by the condensation of 3,4-dimethoxybenzaldehyde (0.01 mol) with 4-bromoacetophenone (0.01 mol) in ethanol (60 ml) in the presence of $\mathrm{NaOH}(5 \mathrm{ml}, 20 \%)$. After stirring for 4 h , the contents of the flask were poured into ice-cold water $(250 \mathrm{ml})$, and the resulting crude solid was collected by filtration. The compound was dried and purified by repeated recrystallization from acetone. Purity of the compound was checked by thin layer chromatography. Crystals of (I) suitable for a single-crystal X-ray diffraction study were grown by slow evaporation of an acetone solution.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrO}_{3}$
$M_{r}=347.20$
Monoclinic, $P 2_{1} / c$
$a=31.3937$ (5) \AA
$b=4.0139$ (1) \AA
$c=25.2400(4) \AA$
$\beta=112.885(1)^{\circ}$
$V=2930.17(10) \AA^{3}$
$Z=8$

$$
D_{x}=1.574 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 8323 reflections
$\theta=0.7-30.2^{\circ}$
$\mu=2.81 \mathrm{~mm}^{-1}$
$T=100.0$ (1) K
Block, colorless
$0.34 \times 0.22 \times 0.17 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.513, T_{\text {max }}=0.640$
82050 measured reflections
8691 independent reflections 6361 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.068$
$\theta_{\text {max }}=30.2^{\circ}$
$h=-44 \rightarrow 43$
$k=-5 \rightarrow 5$
$l=-35 \rightarrow 35$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0518 P)^{2}\right. \\
\quad+4.4325 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=1.15 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-0.59 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9 A-\mathrm{H} 9 A A \cdots \mathrm{O} 1 A$	0.93	2.51	2.835 (4)	100
$\mathrm{C} 4 A-\mathrm{H} 4 A A \cdots \mathrm{O} 3 A^{\mathrm{i}}$	0.93	2.34	3.180 (4)	151
$\mathrm{C} 12 A-\mathrm{H} 12 A \cdots \mathrm{O} A^{\text {ii }}$	0.93	2.58	3.478 (4)	162
$\mathrm{C} 16 A-\mathrm{H} 16 C \cdots \mathrm{O} 2 A^{\text {iii }}$	0.96	2.59	3.501 (4)	158
$\mathrm{C} 9 B-\mathrm{H} 9 B A \cdots \mathrm{O} B$	0.93	2.51	2.832 (4)	100
$\mathrm{C} 4 B-\mathrm{H} 4 B A \cdots \mathrm{O} 3 B^{\mathrm{i}}$	0.93	2.44	3.260 (4)	148
$\mathrm{C} 12 B-\mathrm{H} 12 B \cdots \mathrm{O} 1 B^{\text {iv }}$	0.93	2.58	3.467 (4)	159
$\mathrm{C} 16 B-\mathrm{H} 16 E \cdots \mathrm{O} 2 B^{\text {v }}$	0.96	2.57	3.475 (4)	157

Symmetry codes: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$; (iii) $x, y-1, z$; (iv) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (v) $x, y+1, z$.

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.96 \AA$. The $U_{\text {iso }}$ values were constrained to be $1.5 U_{\text {eq }}$ of the carrier atom for methyl H atoms and $1.2 U_{\text {eq }}$ for the remaining H atoms. The highest peak is located $0.72 \AA$ from atom Br 1 A.

organic papers

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and the Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/ A118 and the USM short-term grant No. 304/PFIZIK/635028.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2005). APEX2 (Version 1.27), SAINT (Version V7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
De Vincenzo, R., Scambia, G., Benedetti, P. P., Ranelletti, F. O., Bonanno, G., Ercoli, A., Delle, M. F., Ferrari, F., Piantelli, M. \& Mancuso, S. (1995). Anticancer Drug Des. 10, 481-490.
Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. \& Nakayama, M. (1988). Jpn J. Appl. Phys. 27, L429-L430.

Jeyabharathi, A., Ponnuswamy, M. N., Nanjundan, S., Fun, H.-K., Chantrapromma, S., Usman, A. \& Razak, I. A. (2002). Acta Cryst. C58, o26-o28.
Kumar, S. K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N. E. \& Khan, S. R. (2003). J. Med. Chem. 46, 2813-2815.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ng, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. \& Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1228-o1230.
Ng, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. \& Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1421-o1423.

Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. \& Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1463-o1465.
Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. \& Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896-o898.

Radha Krishna, J., Kumar, N. J., Krishnaiah, M., Rao, C. V., Rao, Y. K. \& Puranic, V. G. (2005). Acta Cryst. E61, o1323-o1325.
Ravishankar, T., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. \& Yu, X.-L. (2005). Acta Cryst. E61, o405-o407.

Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. \& Yu, X.-L. (2005). Acta Cryst. E61, o480-o482.
Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Santhi, R. \& Fun, H.-K. (2005). Acta Cryst. E61, o3514-o3516.

Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. \& Yu, X.-L. (2005). Acta Cryst. E61, o743-o745.
Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Unnithan, C. S., Fun, H.-K. \& Yu, X.-L. (2005). Acta Cryst. E61, o483-o485.
Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. \& Dharmaprakash, S. M. (2006). Acta Cryst. E62, o890-o892.

Uchida, T., Kozawa, K., Kimura, Y. \& Goto, Y. (1995). Synth. Met. 71, 17051706.

Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. \& Watanebe, Y. (1998). Mol. Cryst. Liq. Cryst. 314, 135-140.
Zhang, G., Kinoshita, T., Sasaki, K., Goto, Y. \& Nakayam, M. (1990). J. Cryst. Growth, 100, 411-416.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

